
Sonatype CLM for Maven i

Sonatype CLM for Maven

Sonatype CLM for Maven ii

Contents

1 Introduction 1

2 Creating a Component Index 3

2.1 Excluding Module Information Files in Continuous Integration Tools 4

3 Creating a Component Info Archive for Nexus Pro CLM Edition 6

4 Evaluating Project Components with Sonatype CLM Server 8

5 Simplifying Command Line Invocations 11

6 Skipping Executions 12

7 Using Sonatype CLM for Maven with Other IDEs 13

7.1 Maven Plugin Setup . 13

7.2 IntelliJ IDEA . 14

Sonatype CLM for Maven iii

7.3 NetBeans IDE . 16

8 Conclusion 19

Sonatype CLM for Maven iv

List of Figures

7.1 Creating a Maven Run Configuration for a CLM Evaluation in IntelliJ 15

7.2 Maven Projects View with the CLM Evalulation Run Configuration in IntelliJ 15

7.3 CLM for Maven Output in the Run Console in IntelliJ 16

7.4 Project View with the pom.xml in NetBeans . 17

7.5 Maven Goal Setup for a CLM Evaluation in NetBeans 17

7.6 CLM for Maven Output in the Output Window in NetBeans 18

Sonatype CLM for Maven 1

Chapter 1

Introduction

Sonatype CLM for Maven allows users to evaluate any Maven-based software projects, in the same way
our integrated tools (e.g. Nexus Pro, Eclipse, Hudson/Jenkins) do.

This means you can access the same robust, reporting features no matter what toolset you use. It can be
run on a command line interface and can therefore be executed on any continuous integration server, as
well as a number of popular IDEs.

How you use the Sonatype CLM for Maven plugin widely depends on how you enforce policy. However,
in general, when using the plugin on a multi-module project in most cases you will only configure an
execution for the modules that produce components that will be deployed as an application.

Typically these are ear files or war files for deployment on application servers or tar.gz or other
archives that are used for production deployments or distribution to users. That said, you can also analyze
all modules of a project. Again, this will largely depend on what your CLM policy is enforcing and what
you want to validate.

In the following sections, we’ll provide details on these goals and their usage:

Index
The index goal of the plugin allows you to prepare data for analysis with Sonatype CLM for CI.

Attach
The attach goal aids your integration with Sonatype Nexus CLM Edition and the release process

Sonatype CLM for Maven 2

using the staging tools of Nexus.

Evaluate
The evaluate goal can trigger an evaluation directly against a Sonatype CLM server.

Note
The help goal provides documentation for all the goals and parameters and you can invoke it with an
execution like mvn com.sonatype.clm:clm-maven-plugin:help

Sonatype CLM for Maven 3

Chapter 2

Creating a Component Index

When evaluating a Maven-based software project, Sonatype CLM for Maven can take advantage of the
dependency information contained in the project’s pom.xml files and the information about transitive
dependencies available to Maven.

The index goal of Sonatype CLM for Maven allows you to identify component dependencies and makes
this information available to Sonatype CLM CI tools (e.g. Sonatype CLM for Hudson/Jenkins or Bam-
boo). You can invoke an execution of the index goal manually as part of your command line invocation
by executing the index goal after the package phase:

mvn clean install com.sonatype.clm:clm-maven-plugin:index

Alternatively you can configure the execution in the pom.xml files build section or in a profile’s
build section.

<build>
<plugins>
<plugin>
<groupId>com.sonatype.clm</groupId>
<artifactId>clm-maven-plugin</artifactId>
<version>2.1.1</version>
<executions>

<execution>
<goals>
<goal>index</goal>
</goals>

</execution>

Sonatype CLM for Maven 4

</executions>
</plugin>

</plugins>
</build>

With the above configuration a normal Maven build execution with e.g. mvn clean install will
trigger the CLM plugin to be executed in the package phase and result in a log output similar to

[INFO] --- clm-maven-plugin:2.1.1:index (default) @ test-app ---
[INFO] Saved module information to /opt/test-app/target/sonatype-clm/ ←↩

module.xml

If you want to manually configure the lifecycle phase to execute the plugin, you have to choose a phase
after package.

The generated module.xml file contains the information that will be picked up by Sonatype CLM for
CI and incorporated into the CLM evaluation. This improves the analysis since Sonatype CLM for Maven
is able to create a complete dependency list rather than relying on binary build artifacts.

Note
By default only dependencies in the compile and runtime scopes will be considered, since this
reflects what other Maven packaging plugins typically include. Dependencies with the scopes test,
provided and system must be manually added, and are described in the Evaluating Project Com-
ponents with Sonatype CLM Server section.

2.1 Excluding Module Information Files in Continuous Integration
Tools

When using the Sonatype CLM Maven plugin and the index goal, module information files are created.
If desired, you can exclude some of the modules from being evaluated. For example, you may want to
exclude modules that support your tests, and don’t contribute to the distributed application binary.

The default location where the module information files are stored is ${project.build.directory}/sonatype-clm/module.xml.

In the supported CI tool, you will see a section labeled Module Excludes. On this area, use a comma-
separated list of Apache Ant styled patterns relative to the workspace root that denote the module infor-

http://ant.apache.org/manual/dirtasks.html#patterns

Sonatype CLM for Maven 5

mation files (**/sonatype-clm/module.xml) to be ignored.

Here’s an example of the pattern described above:

/my-module/target/, **/another-module/target/**

If unspecified, all modules will contribute dependency information (if any) to the evaluation.

Sonatype CLM for Maven 6

Chapter 3

Creating a Component Info Archive for
Nexus Pro CLM Edition

The attach goal scans the dependencies and build artifacts of a project and attaches the results to the
project as another artifact in the form of a scan.xml.gz file. It contains all the checksums for the de-
pendencies and their classes and further meta information and can be found in the target/sonatype-clm
directory. A separate scan.xml.gz file is generated for each maven module in an aggregator project in
which the plugin is executed.

This attachment causes the file to be part of any Maven install and deploy invocation. When the
deployment is executed against a Sonatype Nexus CLM Edition server the artifact is used to evaluate
policies against the components included in the evaluation.

To use this goal, add an execution for it in the POM, e.g. as part of a profile used during releases:

<build>
<plugins>
<plugin>
<groupId>com.sonatype.clm</groupId>
<artifactId>clm-maven-plugin</artifactId>
<version>2.1.1</version>
<executions>

<execution>
<goals>
<goal>attach</goal>
</goals>

Sonatype CLM for Maven 7

</execution>
</executions>

</plugin>
</plugins>

</build>

Once configured in your project, the build log will contain messages similar to

[INFO] --- clm-maven-plugin:2.1.1:attach (default) @ test-app ---
[INFO] Starting scan...
[INFO] Scanning ...plexus-utils-3.0.jar
[INFO] Scanning ...maven-settings-3.0.jar...
[INFO] Scanning target/test-app-1.0-SNAPSHOT.jar...
[INFO] Saved module scan to /opt/test-app/target/sonatype-clm/scan.xml.gz

The attachment of the scan.xml.gz file as a build artifact causes it to be stored in the local repository as
well as the deployment repository manager or the Nexus staging repository ending with -sonatype-clm-scan.xml.gz.
This file will be picked up by Sonatype Nexus CLM Edition and used in the policy analysis during the
staging process. It improves the analysis since Sonatype CLM for Maven is able to create a complete
dependency list rather than relying on binary build artifacts.

Sonatype CLM for Maven 8

Chapter 4

Evaluating Project Components with Sonatype
CLM Server

The evaluate goal scans the dependencies and build artifacts of a project and directly submits the
information to a Sonatype CLM Server for policy evaluation.

If a policy violation is found and the CLM stage is configured to Fail, the Maven build will fail. If
invoked for an aggregator project, dependencies of all child modules will be considered.

The evaluate goal requires the Sonatype CLM Server URL as well as the application identifier to be
configured. Optionally a CLM stage can be configured.

The command line arguments are

clm.serverUrl
the URL for the CLM server, this parameter is required

clm.applicationId
the application identifier for the application to run policy against, this parameter is required

clm.resultFile
the path for specifying the location of a JSON file where the following information will be stored:

• applicationId : Application ID

Sonatype CLM for Maven 9

• scanId : Organization ID

• reportHtmlUrl : URL to the HTML version of the report

• reportPdfUrl : URL to the PDF version of the report

• reportDataUrl : URL to the Data version of the report (for use via CURL, or similar tool)

clm.stage
the stage to run policy against with the possible values of develop, build, stage-release,
release and operate with a default value of build.

clm.additionalScopes
the additional scopes you would like CLM to include components from during the evaluation.
Values include test, provided, and system. In cases where you want to include more than
one of these, separate the list using a comma (see examples below).

An example invocation is:

mvn com.sonatype.clm:clm-maven-plugin:evaluate -Dclm.additionalScopes=test ←↩
,provided,system -Dclm.applicationId=test -Dclm.serverUrl=http:// ←↩
localhost:8070

You can avoid specifying the parameters on the command line by adding them to your settings.xml
or pom.xml as properties.

<properties>
<clm.serverUrl>http://localhost:8070</clm.serverUrl>
<clm.applicationId>test</clm.applicationId>

</properties>

Alternatively the invocation can be configured in a pom.xml file:

<build>
<plugins>

<plugin>
<groupId>com.sonatype.clm</groupId>
<artifactId>clm-maven-plugin</artifactId>
<version>2.1.1</version>
<executions>
<execution>

<goals>
<goal>evaluate</goal>

</goals>
<phase>package</phase>
<configuration>
<serverUrl>http://localhost:8070</serverUrl>

Sonatype CLM for Maven 10

<stage>build</stage>
<applicationId>test</applicationId>
<additionalScopes>test,provided,system</additionalScopes>

</configuration>
</execution>

</executions>
</plugin>

</plugins>
</build>

Sonatype CLM for Maven can be executed against an aggregator project. When executed in an aggregator
project, it calculates the dependencies and transitive dependencies of all child modules and takes all of
them into account for the policy evaluation. It advisable to set the inherited flag for the plugin to
false to avoid duplicate runs of the plugin in each module.

Caution
When bound to a lifecycle in a multi-module build, the plugin will take all dependencies of the
Maven reactor into consideration for its analysis and not just the dependencies of the current
module.

The evaluate goal logs its activity and provides the location of the generated report.

[INFO] --- clm-maven-plugin:2.1.1:evaluate (default) @ test-app ---
[WARNING] Goal ’evaluate’ is not expected to be used as part of project ←↩

lifecycle.
[INFO] Starting scan...
[INFO] Scanning ../repository/org/codehaus/plexus/plexus-utils/3.0/plexus- ←↩

utils-3.0.jar...
[INFO] Scanning ../repository/org/apache/maven/maven-settings/3.0/maven- ←↩

settings-3.0.jar...
[INFO] Scanning target/test-app-1.0-SNAPSHOT.jar...
[INFO] Saved module scan to /opt/test-app/target/sonatype-clm/scan.xml.gz
[INFO] Uploading scan to http://localhost:8070 ...
[INFO] Evaluating policies... (ETA 5s)
[INFO] Policy Action: None
Summary of policy violations: 0 critical, 0 severe, 0 moderate
The detailed report can be viewed online at
http://localhost:8070/ui/links/application/test/report/f4582a1570634dc2ac8

After a successful build the report can be accessed in the Sonatype CLM server under the application that
was configured. A direct link is provided on the log.

Sonatype CLM for Maven 11

Chapter 5

Simplifying Command Line Invocations

If you happen to use the plugin frequently by running it manually on the command line and want to
shorten the command line even more, you can add a plugin group entry to your Maven settings.xml
file:

<settings>
...
<pluginGroups>

<pluginGroup>com.sonatype.clm</pluginGroup>
...

</pluginGroups>
...

</settings>

This enables you to invoke the plugin using its shorthand prefix form:

mvn ... clm:index

Sonatype CLM for Maven 12

Chapter 6

Skipping Executions

The clm.skip parameter can be used, when a CLM plugin execution is configured in your project’s
pom.xml file, but you want to avoid the execution for a particular build. An example execution is

mvn clean install -Dclm.skip=true

The parameter can also be set in your IDE configuration for Maven build executions or as a property in
your settings.xml or pom.xml:

<properties>
<clm.skip>true</clm.serverUrl>

</properties>

Sonatype CLM for Maven 13

Chapter 7

Using Sonatype CLM for Maven with Other
IDEs

While the integration with Eclipse offered by Sonatype CLM for IDE is the most powerful tooling for
developers available, user of other popular integrated development environments are not left without
support. All common Java IDEs have powerful integration with Apache Maven and therefore can be used
together with Sonatype CLM for Maven to evaluate projects against your Sonatype CLM server.

This chapter showcases the integration with IntelliJ IDEA from JetBrains and NetBeans IDE from Oracle.

7.1 Maven Plugin Setup

In our example setup for the usage with other IDE’s we are going to add a plugin configuration for
Sonatype CLM for Maven into the pom.xml file of the project we want to analyze as documented in
Example Configuration of Sonatype CLM for Maven. This configuration defines the serverUrl of the
CLM server to be contacted for the evaluation, the applicationId used to identify the application in
the CLM server to evaluate against and the stage configuration to use for the evaluation.

Example Configuration of Sonatype CLM for Maven

<build>
<pluginManagement>

http://www.jetbrains.com/idea/
https://netbeans.org/

Sonatype CLM for Maven 14

<plugins>
<plugin>
<groupId>com.sonatype.clm</groupId>
<artifactId>clm-maven-plugin</artifactId>
<version>2.1.1</version>
<configuration>

<serverUrl>http://localhost:8070</serverUrl>
<applicationId>test</applicationId>
<stage>develop</stage>

</configuration>
</plugin>

</plugins>
</pluginManagement>

</build>

With this configuration in place a user can kick off an evaluation with the command line mvn package
clm:evaluate.

This will result in an output detailing the components to be analyzed, any policy violations and a link to
the resulting report in the Sonatype CLM server.

Note
To speed the build up you can skip the test compilation and execution by passing
-Dmaven.test.skip=true on the command line invocation, since it is not needed for the CLM
evaluation.

7.2 IntelliJ IDEA

IntelliJ IDEA supports Maven projects natively and you can simply open a project in the IDE by opening
the pom.xml file.

Once your project is opened and you have added the plugin configuration for Sonatype CLM for Maven
from Example Configuration of Sonatype CLM for Maven, you can create a configuration to run the
desired Maven command.

Select Edit Configurations from the Run menu, press the + button and select Maven to add a new config-
uration. Enter the command line and other desired details as displayed in Figure 7.1

Sonatype CLM for Maven 15

Figure 7.1: Creating a Maven Run Configuration for a CLM Evaluation in IntelliJ

After pressing OK in the dialog the new configuration will be available in the run configuration drop down
as well the Maven Projects view. You can open the view using the View menu, selecting Tools Window
and pressing Maven Projects. You will see the window appear in the IDE looking similar to Figure 7.2. It
displays the run configuration selector with the green play button on the top as well as the Maven project
with the CLM evaluation run configuration.

Figure 7.2: Maven Projects View with the CLM Evalulation Run Configuration in IntelliJ

Sonatype CLM for Maven 16

You can press the green play button beside the run configuration, or the configuration entry itself in the
Maven Projects window, to start a build. The build will run in an embedded console window in the IDE
as displayed in Figure 7.3, and show all the output from the Maven build including any error messages
and the link to the produced report in the Sonatype CLM server. Policy violations can be configured to
result in a build failure.

Figure 7.3: CLM for Maven Output in the Run Console in IntelliJ

7.3 NetBeans IDE

NetBeans IDE supports Maven projects natively and you can simply open a project in the IDE by choosing
Open Project from the File menu and navigating to the directory that contains your project.

Once your project is opened, you can expand the Project Files section in the Projects window as displayed
in Figure 7.4. Double-click on the pom.xml file and add the plugin configuration for Sonatype CLM for
Maven from Example Configuration of Sonatype CLM for Maven.

Sonatype CLM for Maven 17

Figure 7.4: Project View with the pom.xml in NetBeans

If you right-click on the pom.xml file, you can choose Run Maven and Goals, to display the dialog
displayed in Figure 7.5. Enter the configuration as displayed and don’t forget to select Remember as:
providing a name. This will allow you to simply start this defined configuration from the Run Maven
context menu of the pom.xml file.

Figure 7.5: Maven Goal Setup for a CLM Evaluation in NetBeans

Sonatype CLM for Maven 18

After pressing OK the defined Maven execution will start and display the output including any error
messages and the link to the produced report in the Sonatype CLM server in the Output window displayed
in Figure 7.6. Policy violations can be configured to result in a build failure.

Figure 7.6: CLM for Maven Output in the Output Window in NetBeans

Sonatype CLM for Maven 19

Chapter 8

Conclusion

As you likely discovered, the Sonatype CLM for Maven plugin not only provides direct command line
Maven functionality, but can extend the existing features of tools that already have direct Sonatype CLM
integration. For example did you look at our section on using the index goal to create a list of dependencies
for your project?

When it comes down to it, Sonatype CLM for Maven allows you to ensure any Maven-based project meets
your team’s desire of reducing risk in association with open source component usage. Even if you are
already using the Sonatype CLM functionality, exploring the capabilities of Sonatype CLM for Maven is
still a good idea.

Take a look at a few of the key take aways to make sure you didn’t miss anything:

• Creating a Component Index

• Evaluating a Maven Project from the Command Line

• Integrating with various IDEs (e.g. Netbeans, IntelliJ IDEA)

	Introduction
	Creating a Component Index
	Excluding Module Information Files in Continuous Integration Tools

	Creating a Component Info Archive for Nexus Pro CLM Edition
	Evaluating Project Components with Sonatype CLM Server
	Simplifying Command Line Invocations
	Skipping Executions
	Using Sonatype CLM for Maven with Other IDEs
	Maven Plugin Setup
	IntelliJ IDEA
	NetBeans IDE

	Conclusion

